

FACULTY OF MECHANICAL ENGINEERING UNIVERSITY "Ss. CYRIL & METHODIUS"

REFRIGERATION SOLVED EXAMPLES RISTO CICONKOV

CONTENTS

Preface

Letter symbols

1. BASIC CALCULATIONS

Velocity, volume and mass flow rate, work, power, heat, heat transmission, overall heat transfer coefficient, heat load, equation of state, moist air, size and pressure drop in pipes (19 examples)

1

2. REFRIGERATION CYCLES WITH AN IDEAL GAS	
2.1. Carnot refrigeration cycle,	15
2.2. Joule refrigeration cycle	16
3. SINGLE STAGE VAPOUR COMPRESSION REFRIGERATION SYSTEMS	
3.1. Basic cycle	19
3.2. Cycle with subcooling	20
3.3. Cycle with superheating	21
3.4. Cycle with a regenerator (internal heat exchanger)	22
3.5. Cycle with zeotropic refrigerant (R407C)	23
3.6. Cycle with transcritical parameters (CO_2)	25
3.7. Cycle with transcritical parameters and with a parallel compression	26
3.8. Cycle with transcritical parameters, parallel compression and internal heat exchanger	
3.9. Transcritical CO_2 system with an ejector as an expansion device	30
3.10. Transcritical CO_2 system with an ejector and with a parallel compression	33
Recommendations: choice of condensing and evaporating temperature	36
3.11. Water chiller	38
3.12. Reciprocating compressors, volumetric efficiency, indicated efficiency	39
3.13. Reciprocating compressors, power, dimensions	43
3.14. Transcritical CO_2 system with an ejector and real cycle	47
Recommendations: for effective efficiency (η_e) of compressors	50
4. COMPLEX VAPOUR COMPRESSION REFRIGERATION SYSTEMS	
4.1. Two-stage compression cycle with one evaporator and intercooler with water	51
4.2. Two-stage compression cycle with one evaporator and intercooling with flash gas	53
4.2. Two-stage compression cycle with one evaporator and intercooling with hash gas 4.3. Two-stage compression cycle with one evaporator and intercooler/flash tank	55
4.4. Two-stage compression cycle with one evaporator and intercooler/flash tank 4.4. Two-stage compression cycle with one evaporator, flash tank and liquid subcooler	55
immersed in tank	57
4.5. Two-stage compression cycle with one evaporator and liquid injection intercooling	59
4.6. Two-stage compression cycle with one evaporator and regenerative liquid subcooler	61
4.7. Two-stage compression cycle with one evaporator and regenerative inquiti subcooler 4.7. Two-stage compression cycle with two evaporators and intercooler/flash tank	63
4.8. Two-stage compression cycle with two evaporators and intercooler/flash tank 4.8. Two-stage compression cycle with two evaporators, intercooler/flash tank and liquid	
subcooler immersed in tank	65
4.9. One-stage compression cycle with two evaporators	67
4.10. Two-stage compression cycle with three evaporators and intercooler/flash tank	69
4.10. Two-stage compression cycle with three evaporators and intercooler/flash tank and 4.11. Two-stage compression cycle with three evaporators and intercooler/flash tank and	09
constant pressure valve	71
constant pressure valve	/1

4.12. Three-stage compression cycle with one evaporator and intercooler/flash tanks 4.13. Cascade refrigeration cycle NH_3/CO_2	73 76
4.14. Two-stage transcritical compression cycle with two evaporators, separator/flash tank, parallel compression and ejectors	78
5. ABSORPTION REFRIGERATION SYSTEMS	
5.1. Basic system with, NH ₃ -H ₂ O	82
5.2. System with a heat exchanger (regenerator), NH_3 - H_2O	86
5.3. System with a heat exchanger (regenerator), $LiBr-H_2O$	89
6. CONDENSERS	
6.1. Shell and tube condenser (NH ₃)	93
6.2. Shell and tube condenser (R134a)	100
6.3. Shell and tube condenser, including desuperheating (R134a)	108
6.4. Evaporative condenser (NH ₃)	115
6.5. Air cooled condenser (R134a)6.6. Air cooled condenser, including desuperheating and subcooling (R134a)	123 132
7. EVAPORATORS	
7.1. Shell and tube dry evaporator (R22)	141
7.2. Shell and tube dry evaporator with superheating (R22)	148
7.3. Shell and tube flooded evaporator (R134a)	155
7.4. Air cooler evaporator (R22)	161
7.5. Air cooler evaporator (NH ₃)	169
8. HEAT EXCHANGERS	1.00
8.1. Shell and tube heat exchanger (liquid – liquid)	177
8.2. Fin coil heat exchanger (air – liquid)	183
9. COLD ROOM	190
9.1. Cold room, calculation of the refrigeration load9.2. Freezing room (tunnel), calculation of the refrigeration load	200
9.2. Freezing room (tunner), calculation of the remigeration load	200
10. DIFFERENT EXAMPLES 10.1. Air cooled condenser – work performances	205
10.2. Water chiller, capacity control, work performances	209
10.3. Heat pump (water-water)	213
10.4. Water chiller / Heat pump (air-water) – reversible cycle with R407C	215
10.5. Water chiller – Pressure drops of secondary loops	220
10.6. Ice storage system for air conditioning	224
10.7. Cascade refrigeration cycle NH3 / CO_2 in supermarket application	227
10.8. Heat pump with CO_2 transcritical cycle	230
11. THERMODYNAMIC AND PHYSICAL PROPERTIES OF REFRIGERANT	'S
AND SECONDARY COOLANTS (BRINES)	
Table 1. Basic and environmental properties of refrigerants	233
Table 2. R717 (ammonia) - Properties of saturated liquid and saturated vapor	234

Table 2. R717 (ammonia) - Properties of saturated liquid and saturated vapor234Table 3. R744 (Carbon Dioxide) Properties of saturated liquid and saturated vapor237

Table 4. R290 (Propane) Properties of saturated liquid and saturated vapor	239
Table 5. R22 - Properties of saturated liquid and saturated vapor	241
Table 6. R32 Properties of saturated liquid and saturated vapor	244
Table 7. R134a Properties of saturated liquid and saturated vapor	246
Table 8. R404A - Properties of saturated liquid and saturated vapor	249
Table 9. R410A - Properties of saturated liquid and saturated vapor	252
Table 10. R1234ze(E) Properties of saturated liquid and saturated vapor	255
Table 11. R717 - Thermophysical properties of saturated liquid	257
Table 12. R717 - Thermophysical properties of saturated vapor	257
Table 13. R744 (Carbon Dioxide) - Thermophysical properties of saturated liquid	258
Table 14. R744 (Carbon Dioxide) - Thermophysical properties of saturated vapor	258
Table 15. R290 (Propane) - Thermophysical properties of saturated liquid	259
Table 16. R290 (Propane) - Thermophysical properties of saturated vapor	259
Table 17. R22 - Thermophysical properties of saturated liquid	260
Table 18. R22 - Thermophysical properties of saturated vapor	260
Table 19. R32 Thermophysical properties of saturated liquid	261
Table 20. R32 Thermophysical properties of saturated vapor	261
Equations for thermophysical properties of R134a of saturated liquid and saturated vapor	262
Equations for thermophysical properties of R404A of saturated liquid and	202
saturated vapor	262
Equations for thermophysical properties of R410A of saturated liquid and	202
saturated vapor	263
Table 21. R1234ze(E) - Thermophysical properties of saturated liquid	264
Table 22. R1234ze(E) - Thermophysical properties of saturated vapor	264
Table 23. Air (dry) - Thermophysical properties at 1.013 bar	265
Table 24. Water - Thermophysical properties of saturated liquid	265
Table 25. Ethylene glycol / Water - Thermophysical properties	266
Table 26. Propylene glycol / Water - Thermophysical properties	268
Table 27. Calcium Chloride / Water - Thermophysical properties	270
Table 28. Sodium Chloride / Water - Thermophysical properties	271
Conversion between "SI" and "IP" units	273
Bibliography	275

Pressure - Enthalpy (Molier) diagrams R717 (Ammonia)

R717 (Ammonia) R744 (Carbon Dioxide) R134a R404A R410A R1234ze(E)